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Adaptive neural network tracking and

controlling network attack node in

WSN
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Abstract. At the time of formulating network attack strategy, information of target network
is uncertain and the attacker lacks comprehensive, reliable and real-time attack basis, which makes
it difficult to achieve attack effect. Hence, a scientific complex network attack method is proposed.
The attackers’ income, loss, cost and encountered risk in network attack are analyzed and index
system is established to comprehensively evaluate attack effect of network node with dynamic
Bayesian network and overcome defects of static evaluation for target node by traditional evaluation
method of node significance by relying on single index of network topology. Simulation experiment
shows that such method combines more node relationship and observation relationship at the time
of attack, avoids the gap between actual attack effect and theoretical expectation when attack
is implemented by relying on static evaluation. In the meanwhile, it is more accurate in attack
precision and of high attack efficiency.

Key words. Network attack, Neural network, Prediction, Network control, Network node,
Node.

1. Introduction

Situation awareness system, monitoring and controlling system, information hinge
center and various force units in network space information are composed of highly
connected complex network. If network system of the opponent is firstly attacked in
information countermeasure, the opponent’s information defense system can be di-
rectly destroyed or disintegrated. With continuous development of information tech-
nology, complex network is more and more widely applied in military and economic
fields and organization structure of network application is of more collaboration.
Application level tends to develop towards multiple directions and network attack
behavior is of more uncertainty. Attack strategy tends to be complex and diversified.
How to use limited force to conduct attack of the most value for many nodes in target
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network relates to degree of attack efficiency. To formulate network attack strategy,
effect of network attack effect shall be evaluated precisely to form consensus. Howe
to make qualitative and quantitative evaluation for effect of network attack under
complex network environment and check validity of attack behavior and safety of
network system have become research hotspots of related fields.

2. Establishment of evaluation index system for network node
and theoretical basis

2.1. Establishment of index system

(1) Attack income based on local attribute of network
Attack income refers to effect achieved by expected action before network attack.

During network attack, it mainly refers to the influence on the opponent’s network
after attacked network node is paralyzed, significance of node subject to intentional
attack in the opponent’s network and possible impact on the global situation after
being attacked and paralyzed. Hence, attack strategy is determined thereby[4, 5, 6].

Significance index of local attribute for node network is easy to be quantified
and attribute information of adjacent nodes is considered only. It is applicable to
analyze significance of local network node in large-scale network.

Definition 1 Node degree
Degree of node i in the network is defined as number of adjacent nodes, expressed

as follows:
K(i) =

∑
j∈G

aij , (1)

aij = 1 indicates direct connection beteween nodes i, j(i 6= j). Otherwise,
aij = 0. The attribute reflects the extent to that single node influences functional
characteristics of other nodes in local network. In the meanwhile, the significance
of node in the network not only depends on its own attribute information, degree
of adjacent node also has certain influence on its significance. Based on adjacent
node information and clustering coefficient, node significance can be defined as L(i),
specifically as follows:

L(i) =
∑

j∈Γ(i)

∑
u∈Γ(j)

N(u) . (2)

Γ(i) indicates adjacent node set of node i, Γ(j) is set of node and the nearest
neighboring node of j. N(u) is sum of number of the nearest neighboring nodes of
node u and number of adjacent nodes.

Definition 2 Approximation centrality
Node approximation indicates reciprocal of the sum of the shortest path distances

between node i and other nodes in the network. If dij is the shortest distance between
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node i and j, its expression is

CCi = N/

N∑
j=1

dij . (3)

The bigger value of node approximation centrality is, the higher degree in the
position of network center will be and the more important the node will be.

Definition 3 Betweenness centrality
If gjk(i) indicates number of the shortest paths between node j and node k via

node i and gjk indicates number of the shortest paths between node j and node k.
Then the expression of betweenness centrality is:

BCi =
∑

i6=j 6=k∈V

gjk(i)

gjk
. (4)

If a node is the only route for communication among other nodes in the network,
its status is more important and its influence on network communication is greater.

Definition 4 Cluster coefficient
Connection degree of all nodes connected with one node in the network can be

defined as node cluster coefficent and network cluster coefficient.
Definition of node cluster coefficient is expressed with coefficient Ci as follows:

Ci =
2ei

ui(ui − 1)
. (5)

ui is quantity of nodes connected with node i and ei is quantity of possible sides
among nodes connected with the node.

Network cluster coefficient is defined as average value of all node cluster coeffi-
cients in the network, expressed as follows:

C =
1

N

N∑
i=1

Ci . (6)

Connection closeness among nodes in the network is in direct proportion to net-
work cluster coefficient. When the coefficient value is 1, the network is a complete
graph and there is side to connect any nodes; if the coefficient is 0, it shows that
nodes in the network are all isolated nodes and there is no side among nodes.

In addition, after comprehensively considering number of adjacent nodes and
association degree, a method based on information of adjacent node and cluster co-
efficient can be used to more objectively judge node significance, specifically defined
as follows:

P (i) =
fi√
N∑
j=1

f2
i

+
gi√
N∑
j=1

g2
i

. (7)
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Where, fi is sum of degrees of node i and adjacent node fi = k(i) +
∑

u∈Γ(i)

k(u)

and k(u) is degree of node u. gi is expressed as follows:

gi =

N
max
j=1

{
cj
fj

}
− ci

fi

N
max
j=1

{
cj
fj

}
−

N
min
j=1

{
cj
fj

} . (8)

Where ci is node cluster coefficient.
(2) Attack income based on global attribute of network
Definition 5 Feature vector
When degree index is used to evaluate node significance, adjacent nodes are

all deemed to be equally significant. Such consideration is unrealistic. Nodes are
unequal. When significance of the node is judged, influence of adjacent nodes shall be
considered as well. If a node is drastically influenced by adjacent nodes, significance
of the node may be very high. If it is slightly influenced by adjacent nodes, even
the node has many neighboring nodes, it may not be insignificant. Such condition
is deemed as feedback for significance of adjacent node.

Feature vector is used in the Thesis to measure the characteristics of node, namely
feature vector of maximum feature value corresponding to adjacent matrix of net-
work, specifically defined as follows:

Ce(i) = λ−1
N∑
j=1

aijεj . (9)

Where λ is maximum feature value of adjacent matrix and ε = (ε1, ε2...εn)T is
feature vector of maximum feature value corresponding to adjacent matrix. Reputa-
tion of single node in the network can be deemed as linear combination of reputation
of other nodes to obtain a linear equation set. Feature vector corresponding to max-
imum feature value of equation set can be used to measure significance of all nodes.

Definition 6 Closeness
Closeness can be used to measure the capacity of nodes in the network imposing

influence on other nodes. Stronger closeness of node indicates that the node is more
significant for functional relation of network system and it is at more central position
in network topology structure, defined as follows:

V (i) =
N − 1
N∑
j=1

dij

. (10)

Where dij is the shortest distance between nodes i, j and closeness index depends
on network topology structure to a great degree. Time complexity at the time of
calculation shall be considered.

(3) Significance for network node of complex load based on invalid cascade
Significance evaluation for network node is mainly considered from static per-
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spective in the first two sections. In reality, most networks are equipped with load.
It may be concrete or abstract[7, 8, 12, 13]. Its distribution can be decided by
many factors. Network topology structure is one of main factors and load decided
by topology structure can be defined as “structure load”. When it is impossible to
judge specific physical load in the network, “structure load” can be used to evalu-
ate invulnerability of complex network and node significance. Here number of the
shortest path Li is used to measure load size. Namely, it is held that the more the
shortest path passing node is, the higher of load on the node will be[8], specifically
defined as follows:

Li =

∑
i6=j

sij(k)
sij

n(n− 1)
. (11)

Where sij is number of all shortest paths between nodes i, j and sij(k) is number
of the shortest paths between i, j via node k.

(4) Attack loss
Attack loss is resource consumption used by attack acion. In network attack,

various attack means (equipment) have resource costs subject to performance evalu-
ation and these resource costs can be extracted as corresponding indexes. It mainly
refers to one’s own computer resource loss when trojan, virus and others are used for
attacking. Measurable indexes include bwndwidth, CPU, RAM occupation quantity
and attack time.

CPU ocupancy rate is expressed as follows:

R̄cpu =

n∑
i=1

Rt
icpu
−R0

icpu

n
. (12)

R̄cpu is average value of CPU occupancy rate of host group attacking after net-
work attack and Rt

icpu
, R0

icpu
are respectively CPU occupancy rates of single attack

terminal after and before network attack; similarly, expressions for occupancy rate
of RAM and bandwidth are shown in Equation (7) and Equation (8):

Occupancy rate of RAM:

R̄mem =

n∑
i=1

Rt
imem

−R0
imem

n
. (13)

Occupancy rate of bandwidth:

R̄band =

n∑
i=1

Rt
iband

−R0
iband

n
. (14)

(5) Attack cost
Traditional selective attack strategies of complex network mostly do not consider

cost factor at the time of attack. Under such precondition, attack cost is not deemed
as considerations to remove nodes or sides in the network. As per such condition,
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network appears very weak when scale-free network is attacked selectively. However,
in reality, scale-free network can present robustness inconsistent with assumptions
when it is attacked. Therefore, to comprehensively measure attack strategy, cost
factor shall be considered[9, 11].

Network G containing N nodes and E sides can be defined as set G = (N,E).
When network G is attacked once, M nodes shall be removed. Then U(M) is taken
as attack cost, defined as follows:

U(M) =

H(i)∑
i⊂Γ(M)

. (15)

H(i) is defined as function regarding degree x of node , defined as H(i) = x. At
this time, cost spent to remove degree x of node under the same attack strategy is
x. Therefore, node with larger node degree requires greater attack cost. In reality,
attack cost of attack action has upper limit, indicates cost U(N) spent to remove
all nodes N in the network G. To facilitate quantization, U(M) is expressed as the
following through normalization processing:

U(M) =
U(M)

U(N)
. (16)

(6) Attack risk degree
Single loophole is quantified with risk ratio P (Vi) and decided by popularity Px,

easiness Py and influence Pz of the loophole, P (V ) = Px ∗Py ∗Pz. Attack formed by
multi-stage attack of attacker is composed of N loopholes. The attack can be realized
when attack conditions of M loopholes are satisfied, namely V = V1∧V2∧V3∧...∧Vm.
So attack risk degree can be defined as the following:

R (A) = P (V )1 ∧ (V )2 ∧ (V3) ∧ ... ∧ (Vm) . (17)

(7) Attack effect of target network
Change of structure function before and after attack of target network reflects

change of its operation efficiency. It can reflect effect of single attack. Here max-
imum connected subgraph O(M) after network attack is used to quantify network
efficiency[1314, 15]. Network efficiency is provided with normalization processing
and expressed with E(M) as follows:

E(M) =
O(M)

|N |
. (18)

In above equation, |N | indicates total number of nodes contained in the network.
As per above definition, to calculate attack effect of target network under specific
attack strategy, paid attack cost and attack loss shall be comprehensively considered
and attack income and loss, cost-efficiency ratio shall be effectively controlled. If
inverse relation among cost, loss and network efficiency is more obvious, the attack
strategy will be more effective. On the contrary, attack strategy of lower validity.
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2.2. Determination of index weight

(1) Determination of weight for criterion level
When weights of attack loss, attack income and attack risk at criterion level are

determined, they shall be set up as per actual attack demand. If attack is made at
no cost, weight of attack income shall be increased; under the condition of preserving
one’s own force, weight of attack loss shall be increased.

(2) Determination of weight for index level
When weights for all factors at index level are determined, analytic hierarchy

process can be determined, with steps as follows
Step 1 Build two-two judgment matrix. 9-scale method is adopted to score and

quantify all indexes at the same level and judgment matrix A is established.
Step 2 Calculate feature vector and maximum feature value. Normalize all col-

umn vectors in judgment matrix to obtain B = (bij)m×n

bij = aij

/
n∑

k=1

akj (i, j = 1, 2, ..., n) . (19)

Arithmetic average value for elements of row vector of B is:

wi =
1

n

n∑
j=1

bij , i, j = 1, 2, ..., n) . (20)

Calculate maximum feature value

λmax =
1

n

n∑
i=1

(Aω)i
ωi

. (21)

Step 3 Check matrix consistency
Calculate consistency index

C.I =
λmax − n
n− 1

. (22)

Calculate consistent R.I(as shown in Table 1)

Table 1. Consistency R.I

Order 1 2 3 4 5 6 7 8 9
R.I 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

Calculate consistency proportion:

C.R =
C.I

R.I
. (23)

When C.R < 0.1, it is considered that judgment matrix A has satisfactory con-
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sistency; on the contrary, when C.R ≥ 0.1, it is considered that judgment matrix A
has no satisfactory consistency and needs to be revised.

3. Evaluation method for attack effect of network node based
on fuzzy, discrete and dynamic Bayesian network

3.1. Theoretical basis for evaluation of dynamic Bayesian
network

As for discrete static Bayesian network with n hidden nodes and m observation
nodes, the inference principle can be reflected as mathematical process of Equation
(23) as per condition independence characteristics.

p(x1,x2, ..., xn |y1, y2, ..., ym ) =∏
j

p(yj |pa(Yj))
∏
i

p(xi |pa(Xi))∑
x1,x2,...,xn

∏
j

p (yj |pa(Yj) )
∏
i

p (xi |pa(Xi) )

i ∈ [1, n] , j ∈ [1,m]

(24)

Where, xi is a state value of Xi and pa(Yj) indicates father node set of Yj .
x11, ..., x1n, ..., xT1, ..., xTn indicates a composite state of hidden variables. Distribu-
tion for composite state of observation variables can be determined through above
equation.

Discrete static Bayesian network forms discrete dynamic Bayesian network of
T time slices. At this time, observation value only has one composite state. So
distribution of hidden variables under observation values is:

p(x11, ...,x1n, ..., xT1, ..., xTn |Y11, Y12, ..., Y1m , ..., YT1, YT2, YTm) =∏
i,j

p(yij |pa(Yij))
∏
i,k

p(xik |pa(Xik))∑
x11,x21,...,xT1...xTn

∏
i,j

p (yij |pa(Yij) )
∏
i,k

p (xik |pa(Xik) )

In above equation, xi is a state value of Xi and subscript i indicates time slice.
Subscript j indicates observation node j. yij is observation value of variable Yij and
pa(Yij) is parent node set of yij . x11, ..., x1n, ..., xT1, ..., xTn and Y11, Y12, ..., Y1m, ...,
YT1, YT2, YTm respectively indicate a state combination of hidden nodes and obser-
vation nodes.

When there are few hidden nodes and observation nodes in the network or node
coupling is strong, with fewer network structure layer and time slices considered,
all time slices of DBN can be deemed as a static Bayesian network. When nodes
gradually increase or node coupling is enhanced, DBN composed of T time slices can
be obtained in time domain. After fuzzy processing of discrete Bayesian network,
observation values are not unique and probability of each state combination is not
1. Then posterior general distribution for combination state of hidden variable is
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calculated and general weighting is conducted finally. Therefore, inference process
of fuzzy dynamic Bayesian network is shown as follows:

p(x11, ...,x1n, ..., xT1, ..., xTn |Y11o, Y12o, ..., Y1mo , ..., YT1o, YT2o, YTmo) =

∑
y11y12...yTm

∏
i,j

p(yij |pa(Yij))
∏
i,k

p(xik

∣∣∣∣∣pa(Xik))
∏
i,j

p(Yijo = yijo)∑
x11,x21,...,xT1...xTn

∏
i,j

p (yij |pa(Yij) )
∏
i,k

p (xik |pa(Xik) )

i ∈ [1, T ] , j ∈ [1,m] ,K ∈ [1, n]

(25)

In above equation, xij is a state value of Xij ; i is time slice i in time sequence;
j indicates observation node; yij indicates observation value of variable Yij in time
slice i; pa(Yij) is parent node set of yij ; Yijo is observation state of observation node
j in time slice i; p(Yijo = yijo) represents membership of continuous observation
value of Yij belonging to state yij .

3.2. Establishment of dynamic Bayesian evaluation net-
work

Situation states of index at criterion level and attack effect at target level are
classified as per key parameter threshold of index element. After states at all levels
are normalized by next level of indexes, division is made as per values obtained
after adding weights. Multiple time slices are selected to repeat the process to
obtain value range. They are divided to different thresholds to build fuzzy set EA =
(high efficiency, medium efficiency and low efficiency), Em1

= (high income, medium
income and low income), Em2

= (high loss, medium loss and low loss); Em3
= (high

risk, medium risk and low risk) Em4
= (high cost, medium cost and low cost).

4. Example analysis

In certain network attack action, “kite network” designed by Krackhardt is taken
as an example, as shown in Fig. 2. Table 2 is attack income index for local attribute
of all nodes before attack to attack global attribute index and number of the shortest
path. From calculation of attack income index, it can be known that node 7 is
major attack target in the network. Attack risk degree is calculated after feeding
back loophole scanning of network sensor during the attack. In combination with
evaluation of attack loss, attack efficiency probability is evaluated with attack effect
of node 7 in 10 different moments as an example.
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Fig. 1. Kite network

Table 2. Data calculation result at index level of attack income based on local attribute of network

Node Node degree Proximity centrality Betweenness centrality Cluster coefficient

1 1 1.23 0.3347 1
2 2 0.5726 0.4762 1
3 3 0.4944 0.6731 1
4 5 0.4703 0.7143 0.5
5 5 0.4703 0.7143 0.5
6 3 0.7051 0.5655 1
7 6 0.4742 0.6762 0.4
8 3 0.7053 0.5563 1
9 4 0.5782 0.5891 0.66
10 4 0.5782 0.5891 0.66

4.1. Determination of weight

Estimated weighted value of effect of target level at index level is calculated
according to level recombination principle. As per statistics of previous attack,
weights of attack income, attack loss, attack cost and attack risk at criterion level
are initialized as ωt

m = (0.35, 0.25, 0.2, 0.2) (dynamically adjusting weight ratio
after obtaining effect data). Two-two comparison method is applied and weights of
all indexes for attack income at index level are ωn

q1−q7 = (0.137, 0.157, 0.125, 0.173,
0.116, 0.093, 0.109); weights of all indexes for attack loss are ωn

q8−q11 = (0.25, 0.35,
0.25, 0.15) and weights of all indexes for attack risk are ωn

q13−q19 = (0.126, 0.131,
0.158, 0.139, 0.137, 0.157, 0.162).

Hence, weight of index level relative to the highest level is:

ωt
q1−q7 = ωt

m(1)× ωm
n × ωn

q1−q7

= 0.35× 1× (0.137, 0.157, 0.125, 0.173, 0.116, 0.093, 0.109) ,

ωt
q8−q11 = ωt

m(2)× ωm
n × ωn

q8−q11 = 0.25× (0.25, 0.35, 0.25, 0.15)

ωt
q13−q19 = ωt

m(3)× ωm
o (1)× ωo

q13−q19

= 0.2× (0.126, 0.131, 0.158, 0.139, 0.137, 0.157, 0.162) .
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4.2. Evaluation

After evaluation matrix is determined, corresponding matlab algorithm can be
used to attribute values of all indexes with indexes q1 ∼ q7 to compose decision-
making matrix X = (xij)N×M . Weighted normal matrix is calculated as per weight
value obtained by use of AHP method and decision-making matrix R after standard-
ization of matrix X.

Y =



0.0142 0.0772 0.1003 0
0.0274 0.1752 0.1381 0.2861
0.0428 0.1967 0.1937 0.4994
0.0721 0.2074 0.1613 0.2974
0.0721 0.2074 0.1937 0.2974
0.0428 0.1383 0.1613 0
0.0859 0.2053 0.1925 0.1303
0.0428 0.1382 0.1613 0
0.0571 0.1682 0.1703 0.0293
0.0571 0.1682 0.1703 0.0293

0.0733 0.1243 0.0548
0.1251 0.0343 0.2164
0.2273 0.0343 0.1790
0.1221 0.2343 0.1922
0.0302 0.1313 0.2021
0.1653 0.1543 0.1833
0.1473 0.2279 0.0302
0.1093 0.0343 0.2341
0.2253 0.1827 0.0951
0.1043 0.2037 0.2217


.

Loopholes of all nodes in the network are analyzed and selected attack tool set
is determined to be {p1, p2, ...pn} . Each attack pi has resource consumption evalu-
ated by the system Ci(q8, q9, q10, q11), then index q8 ∼ q11 is total cost of resource

consumption C =
n∑

i=1

Ci; indexes q12 ∼ q17 can be evaluated through protection

capacity of attack system; as for index q18, loophole risk ratio P (Vi) is calculated
through node loophole analysis and risk degree R (A) is solved.

4.3. Setup of model parameters

Attack effect of target node is inferred from three index states, attack income,
attack risk and attack loss of network node and condition and state transfer prob-
ability are shown in Table 3 and Table 4. Joint tree inference engine of MATLAB
BNT tool cabinet is selected to infer the model[4]. Suppose attack moments are con-
tinuous and continuous observation is conducted at 9 moments, observation values
are set up according to data obtained in different moments. All initial data in Table
3 and Table 5 are input to the model.

Fig. 4 shows distribution for probability of attack effect from the first attack to
the tenth attack. It can be known that from the first attack to the fourth attack, with
attack strategy formulated on the basis of known network topology structure, at the
time of implementing attack, information fed back from loophole, attack cost and
attack loss is incomplete and attack effect is low. After continuously adjusting attack
strategy and conducting the eighth attack, attack effect is improved significantly
and gradually increases to the tenth to reach the peak value. Finally, it is calculated
that probability average value with the 10th high attack effect for the node is 0.65.
Similarly, it is calculated for the remaining 9 nodes with the method to obtain
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Monitor attack event 

Update distribution of 
confidence degree for situation 

and adjust attack strategy 

   IF situation=S

SO plan=P

Comprehensively analyze network 
damage situation 

Evaluate result Predict 
effect 

Event clue 

Feed back attacked node 

YES

Event clue 

Evaluate local and global 
damage of network 

Analysis of network topology structure and loophole 
scanning information 

NO

Attack scheme 
 

  
Fig. 2. Decision-making steps of network attack scheme

probability average value with high attack effect as follows:

P̄1 = 0.47, P̄2 = 0.52P̄3 = 0.33P̄4 = 0.52P̄5 = 0.63P̄6 = 0.39P̄7 = 0.65,

P̄8 = 0.42P̄9 = 0.38P̄10 = 0.36.

Table 3. Conditional transfer probability for index at node criterion level

A P(m1/A)
High medium low

P(m2/A)
High medium low

P(m3/A)
Strong general weak

P(m3/A)
Strong general weak

High
Medium
Low

0.4 0.3 0.3
0.5 0.3 0.2
0.1 0.2 0.7

0.6 0.2 0.2
0.5 0.3 0.2
0.1 0.3 0.6

0.3 0.5 0.2
0.4 0.4 0.2
0.1 0.4 0.5

0.2 0.5 0.3
0.7 0.1 0.2
0.2 0.5 0.3



ADAPTIVE NEURAL NETWORK TRACKING AND CONTROLLING NETWORK 617

Table 4. State transfer probability of node attack effect

A(T+1) High (T+1) Medium (T+1) Low (T+1)

A(T)

High (T) 0.6 0.2 0.2

Medium (T) 0.3 0.4 0.6

Low (T) 0.1 0.4 0.2

Table 5. State observation values for index probability at node criterion level

m1 m2 m3 m3
T0 (0.6, 0.1, 0.3) (0.1, 0.1, 0.8) (0.4, 0.2, 0.4) (0.2, 0.5, 0.3)

T1 (0.1, 0.1, 0.8) (0.2, 0.3, 0.5) (0.5, 0.2, 0.3) (0.1, 0.3, 0.6)

T2 (0.1, 0.2, 0.7) (0.3, 0.4, 0.2) (0.5, 0.3, 0.2) (0.4, 0.3, 0.3)

T3 (0.1, 0.2, 0.7) (0.4, 0.4, 0.2) (0.6, 0.3, 0.1) (0.2, 0.3, 0.5)

T4 (0.1, 0.3, 0.6) (0.5, 0, 0.5) (0.6, 0.2, 0.2) (0, 0.2, 0.8)

T5 (0.3, 0.6, 0.1) (0.6, 0.4, 0) (0.6, 0.3, 0.1) (0.3, 0.3, 0.4)

T6 (0.6, 0.3, 0.1) (0.7, 0.2, 0.1) (0.8, 0.1, 0.1) (0.8, 0.1, 0)

T7 (0.7, 0.2, 0.1) (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.6, 0.2, 0.2)

T8 (0.8, 0.1, 0.1) (0.9, 0.1, 0) (0.8, 0.1, 0.1) (0.3, 0.2, 0.5)

Fig. 3. Probability distribution for high, medium and low time of different attack
effects of node 3

4.4. Analysis of method efficiency

To further describe method validity, INET3.0 is used under experiment to se-
lect node topology graph of some information hinges in “backbone network for all-
American information superhighway” (data publicized in 2007) for simulation attack.
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It is defined that as for network Go = (94, 239), node deletion method, betweenness
method and method in the Thesis are respectively adopted for experiment. Fig. 4
is distribution for node significance of all information hinges calculated with three
methods. Attack strategy is formulated according to data calculated as per signifi-
cance for simulation attack. Fig. 5, Fig. 6 and Fig. 7 are comparisons of network
node distribution before and after attacking with node deletion method, between-
ness method and method in the Thesis adopted. After attack, the network can be
respectively redefined as G1 = (77, 157) , G2 = (69, 141) , G3 = (57, 127). Based on 3
methods, after attacking Go for fifty times, the network efficiency is calculated and
summarized, as shown in Fig. 4.

Fig. 4. Distribution for node significance in three methods

It can be seen from Fig. 5, Fig. 6 and Fig. 7 that effects for implementing attack
after estimating significance of network nodes with typical betweenness method and
node deletion method in simulation experiment differ slightly. Attack of target net-
work with method in the Thesis has obvious advantage in efficiency. As for complex
network with the same topology structure, when selective attack is implemented,
effect produced by attack and expectation shall be fit in each attack[16, 17], and at-
tack strategy shall be dynamically adjusted to transfer weight to nodes of maximum
connected subgraph which will directly influence function of the whole network sys-
tem after removal and filter those nodes of maximum connected subgraph without
influence on network function. Finally, random network with different scales (ER
model, connection probability p = 0.35) is provided with attack probability analysis
under the same experiment environment. Time index is selected for evaluation. It
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  a. Connected distribution graph of network nodes before attacking with betweenness method

b. Connected distribution graph of network nodes after attacking with betweenness method

 
  

 
  c. Connected distribution graph of network nodes before attacking with node deletion method

d. Connected distribution graph of network nodes after attacking with node deletion method

 
  

 
  e. Connected distribution graph of network nodes before attacking with method in the thesis

f. Connected distribution graph of network nodes after attacking with method in the thesis

Fig. 5. Comparisons before and after attacking target network with three methods

can be seen from Fig. 7 that when network scale increases continuously and com-
plexity of topology structure rises continuously, with gradual increasing of nodes,
method in the Thesis is relatively stable in time consumption and is superior to
other two algorithms after network scale reaches certain degree[19].
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  Fig. 6. Network efficiency comparison after attacking target network for 50 times

with three methods
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Fig. 7. Efficiency comparison after attacking target network with three methods

5. Conclusion

When attack strategy is formulated, structure, defense deployment and impor-
tant nodes of network to be attacked are unknown and uncontrollable and index
data used to evaluate attack effect are always not comprehensive. If static means
are used to evaluate target network, it is strongly passive and there is always gap
between expected effect. Through comprehensively analyzing all factors of network
attack with dynamic Bayesian network, evaluation index system is established to
apply dynamic Bayesian network method to dynamically evaluate network attack
effect. In consideration of global and local effect after network nodes are attacked,
attack cost and loss are taken as consideration factor for decision-making basis at
the time of attack and new attack method is proposed to provide more scientific,
autonomous and controllable aid decision-making means at the time of formulat-
ing network attack scheme and implementing attack action and drastically improve
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attack of complex network attack. However, whether superiority embodied by this
method under experiment environment is applicable to other network attack with
more complex structure and highly intelligentized defense strategy.
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